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We study the applicability of the parallel tempering �PT� method in the investigation of first-order phase
transitions. In this method, replicas of the same system are simulated simultaneously at different temperatures,
and the configurations of two randomly chosen replicas can occasionally be interchanged. We apply the PT
method for the Blume-Emery-Griffiths model, which displays strong first-order transitions at low temperatures.
A precise estimate of coexistence lines is obtained, revealing that the PT method may be a successful tool for
the characterization of discontinuous transitions.
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I. INTRODUCTION

Due to the absence of exact solutions on most systems,
Monte Carlo methods play an important role not only in
statistical physics and critical phenomena but also in other
areas. Usually, the Metropolis �1� and the Glauber �2� algo-
rithms are used to lead the system to the Gibbs distribution.
Despite their simplicity and generality, difficulties appear in
studying the emergence of phase transitions when these al-
gorithms are used to generate the microscopic configura-
tions. Several techniques have been proposed to circumvent
these difficulties, such as the multicanonical technique �3�,
cluster algorithms �which work properly not only for reduc-
ing critical slowing down �4�, but also for eliminating meta-
stability in first-order transitions �5–7��, the Wang-Landau
method �8�, simulated tempering �9�, and replica exchange,
also named parallel tempering �PT� methods �10,11�.

Special attention has been devoted to this last approach,
due to its relative simplicity in comparison with other ap-
proaches, and its enormous applicability for several systems
in the framework of both statistical mechanics �12–15� and
molecular dynamics �15,16�. Essentially, the PT method con-
sists of simulating simultaneously a given set of replicas of
the same system at different temperatures and, occasionally,
interchanging the configuration of two randomly chosen el-
ements of those replicas. This exchange between pairs of
replicas allows for the implementation of an ergodic walk in
the configuration space when the elements of the pair are
separated by large free-energy barriers.

Although the PT method has been widely used in several
contexts, an open question concerns its applicability for the
investigation of first-order phase transitions �10�. In fact,
since in discontinuous transitions a gap in the energy might
lead to a small probability of accepting exchanges between
replicas, this appears not to be a favorable scenario for PT.

In this paper, we give a further step in this direction by
applying the PT method to study and characterize first-order
transitions. We will consider the well known spin-1 Blume-
Emery-Griffiths �BEG� model �17�, which possesses a rather
rich phase diagram with different structures, including first-
order transitions in the regime of low temperatures. As we
shall see, the PT method can be applied because thermody-
namic properties are actually described by continuous func-
tions when finite systems are simulated. In fact, the discon-

tinuity of thermodynamic properties occurs only in the
thermodynamic limit. However, smooth curves are obtained
only when one uses a dynamics yielding a correct sampling
of the configuration space �5,7,8�. In particular, the use of the
PT method allows for application of a new finite-size proce-
dure for the study of first-order phase transitions, as pro-
posed in Ref. �7�. It is worth mentioning that a PT-based
analysis of first-order transitions has recently been proposed
by Neuhaus et al. �18�. That approach is, however, rather
different from the one adopted here.

This paper is organized as follows. In Sec. II we present
the model, in Sec. III we describe the PT method, in Sec. IV
we discuss the numerical results, and in Sec. V we give the
conclusions.

II. MODEL

The spin-1 BEG model is described by the following
Hamiltonian:

H = − J�
�i,j�

�i� j − K�
�i,j�

�i
2� j

2 + D�
i

�i
2, �1�

where �i denotes the spin variable of the ith site of the lat-
tice, which assumes the values �1 and 0, and the sums run
over the nearest-neighbor spins on a d-dimensional lattice
with V=Ld sites. The parameters J ,K are the nearest-
neighbor spin couplings and D is the quadrupole moment.
We have two order parameters defined as follows:
q= ��i=1

V �i
2� /V and m= ��i=1

V �i� /V. The BEG model will be
considered for a square lattice and periodic boundary condi-
tions.

III. PARALLEL TEMPERING METHOD

In the parallel tempering method, configurations at high
temperatures are used to perform an ergodic walk at low
temperatures. To this end, we simulate, for fixed values of D,
a set of N replicas in the interval of temperatures
�T1 , . . . ,TN	, where T1 and TN are extreme temperatures.

The dynamics is composed of two parts. In the first part,
each one of the N replicas is simulated according to the
Metropolis algorithm. For the ith replica a given site k of the
system is chosen at random and we select, with equal prob-
ability, one of the two other possible spin values �k� such
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that �k���k. The spin variable �k is then replaced with
�k� according to the Metropolis prescription:
pk=min�1,exp�−��H�	 �1�, where �H=H��k��−H��k� and
�=1 /kBT. In the second part of the dynamics, PT is imple-
mented. After a given number of Monte Carlo steps, the
exchange of configurations of two replicas at temperatures Ti
and Tj is performed with the probability pij =min(1,exp���i
−� j��H��i�−H�� j��	), where Tj �Ti, j= i+�, and � denotes
the “distance” between two arbitrary replicas. The probabil-
ity pij depends on ��i−� j� and for this reason the perfor-
mance of the method will depend on the distance between
the replicas. If the difference is large enough, exchanges will
hardly be performed and the PT method will not provide any
improvement in the results.

In this paper, we adopt two independent procedures to
choose the interval of temperatures. In the first one, the dis-
tance between adjacent temperatures obeys a geometric pro-
gression. Some authors have shown �19,20� that, while this
procedure works well when specific heat of the system is
about constant, at the emergence of a phase transition, when
the specific heat diverges, its efficiency is reduced. For this
reason, we adopted a second procedure, which consists in
distributing temperatures in regular intervals between T1 and
TN for a given small size system. By increasing L, we intro-
duce additional temperatures between Ti and Ti+1. This pro-
cedure is necessary because the exchange probability in gen-
eral decreases as L increases. We have verified that both
procedures lead to the same results, within the statistical er-
rors.

Concerning the replica exchanges, we also consider ex-
changes between nonadjacent sites. This is implemented in
this work by allowing � to range in the interval �=1, . . . ,6.
As will be shown, although nonadjacent exchanges have
been less studied �14,15�, because the probability of per-
forming a given exchange decreases when � increases, they
have been revealed to be essential mechanisms in eliminat-
ing hysteretic effects.

IV. NUMERICAL RESULTS

We have simulated three different values of K /J, given by
K /J=0, 3, and 3.3. Note that the first case �K /J=0� corre-
sponds to the well known Blume-Capel model. Replicas are
distributed in the intervals T1=1.5�T�2.2=TN, for K /J
=3 and 3.3, and T1=0.4�T�0.62=TN, for K /J=0. We have
simulated systems with size L ranging from L=10 up to 40,
and we considered 8	107 Monte Carlo �MC� steps to evalu-
ate the appropriate quantities after equilibrating the system.
For all values of K /J considered here, the system displays
two ferromagnetic phases �rich in spins � and 
� for small
values of D. Also, a paramagnetic phase �rich in spins 0�
occurs for high values of D. A strong first-order phase tran-
sition between the ferromagnetic and paramagnetic phases
occurs for a given value of D that depends on K /J and T.

The first inspection of the applicability of PT for first-
order transitions is shown in the inset of Fig. 1, where we
compare the PT results with those obtained by using only the
Metropolis algorithm. When only the Metropolis algorithm is
used in the simulation, the system gets trapped in metastable

states and even after 8	107 MC steps it does not undergo a
transition to the stable phase. This effect does not occur
when we use PT with nonlocal exchanges, since the system
becomes able to pass from one phase to the other. The effi-
ciency of the PT method is also corroborated by the agree-
ment with results obtained from cluster algorithms �7�, where
a smooth curve is obtained for the order parameter. However,
as mentioned previously, when one considers only exchanges
of configurations between nearest-neighbor replicas, hyster-
esis is still present, as shown in Fig. 1.

The role of nonlocal exchanges is analyzed in more detail
by considering the time evolution of thermodynamic proper-
ties at the phase coexistence. In Fig. 2 we plot, for a single
run, the order parameter q starting from two different initial
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FIG. 1. Order parameter q as a function of D for K /J=3,
T=1.5, and L=30 obtained from parallel tempering �symbol 	� and
cluster algorithms �circles�. Squares correspond to data obtained
from parallel tempering with exchanges only between nearest-
neighbor replicas. In the inset, circles and triangles refer to the
Metropolis algorithm, whereas the symbol 	 refers to the parallel
tempering.
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FIG. 2. �Color online� Time evolution of the order parameter q
for a single run starting from two independent initial configurations
simulated with �a� the Metropolis algorithm and �b� the PT method,
for L=20, T=1.5, D=8.0, and K /J=3. In the insets the time evo-
lution of the total energy per volume u is given for those initial
configurations. In contrast with PT, until M =6	104 MC steps the
Metropolis algorithm provides a nonergodic simulation.
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configurations for K /J=3, T=1.5, and L=20. In the inset of
each graph, we plot the time evolution of the total energy per
volume u for the same initial configurations. In contrast with
PT, until M =6	104 MC steps, the simulation is not ergodic
when the system is simulated with the Metropolis algorithm.
Next, in Fig. 3�a� the time evolution of the system simulated
via PT with local and nonlocal exchanges is compared with
the results provided by cluster algorithms. Note that, for
��2 and M �3	104 MC steps, the time evolution of the
PT simulation for q converges to q
2 /3 �as will be ex-
plained later�, in agreement with cluster algorithm simula-
tions. A similar behavior is obtained in all cases for the quan-
tity m. In Fig. 3�b� we show the exchange mean probability
p*= �min(1,exp���i−� j��H��i�−H�� j��	)� �14� as a func-
tion of T for different distances � between replicas, and
L=20. Except for �=1, the minimum in p* occurs at
T
1.95, indicating the coexistence between the ferromag-
netic phases, a paramagnetic phase rich with spins 0, and a
disordered phase, that takes place in the limit of high tem-
peratures �17�. Our results show that, although nonlocal ex-
changes are performed less frequently than local ones, they
are fundamental for ensuring an ergodic simulation of the
system. Next, we will describe the methodology employed in
determining coexistence lines. Their location will be derived
from finite-size analysis for both the order parameter q and
the susceptibility �T.

Although a discontinuous phase transition is characterized
by a jump in the order parameter, the discontinuity takes
place only in the thermodynamic limit. For finite systems,
not only the order parameter but also other quantities are
described by continuous functions �7,8�. In this case, the be-
havior of physical quantities scales with the volume of the
system �22,23�. In Fig. 4, the order parameter q is shown as
a function of D for several values of L.

Although isotherms present strong dependence on the sys-
tem size, they intersect one another at the point D=D

0
*

=8.0000�1� and q
2 /3. As explained in Refs. �7,24�, by
means of two different lines of reasoning, the point where all

isotherms cross is independent of the lattice size. This can be
understood by recalling that in the regime of low tempera-
tures two ferromagnetic phases �q
1� coexist with a para-
magnetic phase rich in spins zero �q
0� at D=D

0
*, yielding

q
2 /3 for all system sizes. Therefore, the crossing point
can be used as a criterion to estimate the transition point. As
will be shown later, the estimate of D

0
* agrees very well with

the value D
�
* obtained from finite-size analysis for the sus-

ceptibility �T. In Fig. 4�b�, we describe the collapse of all
data by the expression y*= �D−D

0
*�L2, confirming the depen-

dence on the volume. At low temperatures, the relation be-
tween q and the system size L and D is expressed by the
following equation �7,25�:

q =
b + ce−āz

1 + de−āz , �2�

where ā, b, c, and d are fitting parameters and z�D−D
0
*. In

Fig. 4�a�, continuous lines correspond to the fittings pro-
posed by Eq. �2�. The parameter ā scales with the volume, as
shown in Fig. 4�c�. In the thermodynamic limit L→�, while
the quantity ā diverges, the order parameter q does not. Ac-
cording to Eq. �2�, in the ferromagnetic phase, which occurs
in the region D−D

0
*
0, we have that q→c /d as L→�. On

the other hand, in the paramagnetic phase, which appears for
D−D

0
*�0, q→b as L→�. For D=D

0
*, we have a jump in q,

indicating a discontinuous phase transition.
In the second analysis, we determine the transition point

by examining the susceptibility �T=�L2��q2�− �q�2�. On in-
creasing D toward the coexistence line, one observes a sharp
peak in �T at D

L
* for all system sizes, as shown in Fig. 5�a�.

The deviation between D
L
* and its asymptotic value D

�
* de-

cays as L−2 in a first-order transition �22,23�. Our results
satisfy this asymptotic relation, as can be seen in Fig. 5�b�.
From this law, we have obtained the extrapolated value D

�
*

=8.0000�1�, which agrees with the estimate D
0
* obtained pre-
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FIG. 3. �Color online� �a� Time evolution of the order parameter
q simulated by cluster algorithm and PT with exchanges between i
and its �i+��th next-neighbor replica ��=1, 2, 3, and 6� for L=20
and 500 independent runs. �b� shows the mean probability p* versus
T for different �.
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FIG. 4. Order parameter per volume q versus D for several
values of the system size L for K /J=3 and T=1.5. Continuous lines
correspond to the fittings defined by Eq. �2�. In �b� we have a
collapse of all data by using the relation y*= �D−D

0
*�L2. In �c� we

have a log-log plot for the quantity ā as a function of L. The straight
line has slope 2.00�1�.
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viously and also agrees with the result D̄=8.0000�1� ob-
tained from a cluster algorithm for the BEG model �7�. In
Fig. 5�c� we observe that all curves coalesce to �*=�T /L2

and y*= �D
L
*−D

�
*�L2, confirming once again the scaling with

volume.
It is worth emphasizing that, when one uses only the Me-

tropolis algorithm to generate the configurations, neither the
crossing among isotherms nor accurate finite-size analysis
for smooth curves is possible, due to the presence of hyster-
esis effects, as can be seen in Fig. 1.

In Figs. 6 and 7, we repeat, for K /J=3.3 and T=1.5, both
analyses presented above for determining phase coexistence.
From the first procedure, where all isotherms are to be fitted
by Eq. �2�, the crossing is given by q
2 /3 and

D
0
*=8.6032�1�. This estimate agrees with the value

D
�
* =8.6033�1� obtained from finite-size analysis for the

quantity �T, as shown in Fig. 7. These estimates, both ob-
tained by using PT, are in good accordance with the value

D̄=8.6032 obtained by Rachadi and Benyoussef from cluster
algorithms �6�.

In the last analysis, we show in Fig. 8 numerical results
for K /J=0 considering T=0.4. When all isotherms are fitted
with Eq. �2�, the intersection point turns out to be given by
q
2 /3 and D

0
*=1.9968�1�. The collapse of data using this

estimate of D
0
* confirms again the adequacy of this procedure

for the estimation of the transition point. Repeating this pro-
cedure for T=0.5, we verify that all isotherms cross the ab-
scissa at D

0
*=1.9879�1�, which is in fair agreement with the
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estimates T=0.499�3� and D̄=1.992 �21�, by means of the
Wang-Landau method.

V. CONCLUSIONS

In this paper, we have applied the parallel tempering
method for the study of first-order transitions. We have con-
sidered different regions of the phase diagram of the BEG
model, for which the usual Metropolis algorithm leads to
strong hysteresis at phase coexistence, providing no reliable
estimates of the coexistence lines. On the other hand, by
using PT it was possible to circumvent the free-energy bar-
riers and as a consequence hysteretic effects were eliminated.
All results obtained via PT allowed us to locate the transition
points precisely by means of two techniques, whose esti-
mates agree with those obtained from other procedures, such
as cluster algorithms and, in one case, with the Wang-Landau

method. Although the agreement between results obtained
from PT and cluster algorithms has been shown to be very
good, cluster algorithms are more specialized, since each
model requires a specific cluster algorithm that takes into
account the appropriate transitions. On the other hand, PT is
general and can be used, in principle, for any system. We
remark that more studies of first-order transitions using par-
allel tempering are still required, in order to have a better
comprehension of its performance.
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